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Abstract: The role of light-based technologies in dermatology has expanded dramatically in 

recent years. Lasers and intense pulsed light have been used to safely and effectively treat a 

diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, 

and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation 

and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly 

popular worldwide, and demand for them has fueled new innovations and clinical applications. 

These systems continue to evolve and provide enhanced therapeutic outcomes with improved 

safety profiles. This review highlights the important roles and varied clinical applications that 

lasers and intense pulsed light play in the dermatologic practice.
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Laser and intense pulsed light principles
Laser is an acronym, which represents light amplification by the stimulated emission 

of radiation. An understanding of the fundamental properties of laser light is essential 

to appreciate its clinical effects on the skin.1,2 First, laser light is monochromatic, 

meaning that the emitted light is composed of a single wavelength. This is determined 

by the medium of the laser system through which the light passes. Second, laser light is 

coherent – traveling in phase spatially and temporally. Third, laser light is collimated – 

emitted in a parallel manner with minimal divergence.

Laser light may be absorbed, reflected, transmitted, or scattered when applied 

to the skin. In order for a clinical effect to occur, light must be absorbed by tissue. 

Absorption of laser light is determined by chromophores – the target molecules found 

in the skin, which have specific wavelength absorption profiles. The three primary 

endogenous cutaneous chromophores are water, melanin, and hemoglobin; whereas 

tattoo ink represents an exogenous chromophore. Upon absorption of laser energy 

by the skin, photothermal, photochemical, or photomechanical effects may occur. 

The cutaneous depth of penetration of laser energy is dependent upon absorption and 

scattering. In the epidermis, there is minimal light scattering, whereas in the dermis 

there is significant scatter due to the high concentration of collagen fibers. The amount 

of scattering of laser energy is inversely proportional to the wavelength of light. The 

depth of laser energy increases with wavelength until the mid-infrared region of the 

electromagnetic spectrum, at which point dermal penetration becomes more superficial 

due to increased absorption within tissue water.

The theory of selective photothermolysis proposed by Anderson and Parrish3 in 

1983 has been pivotal in the advancement of laser surgery. It explains the mechanism 
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by which controlled destruction of a cutaneous target can be 

achieved without significant injury to surrounding tissue. 

Three principles are crucial to the process. First, an appro-

priate wavelength should be employed that can be absorbed 

preferentially by the targeted tissue chromophore. Second, 

the pulse duration of the laser must be shorter than the 

chromophore’s thermal relaxation time, which is the time 

required for the target to lose half of its peak temperature 

following irradiation. Third, the fluence (or energy) must 

be sufficient to achieve destruction of the target within the 

appropriate time interval. These factors guide the selection 

of lasers and intense pulsed light (IPL) appropriate for a 

specific skin target or lesion.

Lasers can be further classified by their mode of light 

emission. Continuous wave (CW) lasers produce a continuous 

beam of light with long exposure durations that can cause 

nonselective tissue damage. Quasi-CW mode produces 

interrupted emissions of constant laser energy by shuttering 

the CW beam into short intervals. Pulsed laser systems emit 

high-energy laser light in ultrashort pulse durations with 

relatively long interpulse time intervals. They can be long 

pulsed (LP) or very short pulsed such as the quality-switched 

(QS) nanosecond and picosecond laser systems.

IPL is a nonlaser filtered flash lamp device. Unlike 

lasers, IPL devices emit polychromatic, noncoherent, and 

noncollimated light (420–1,400 nm) with varying pulse 

durations. The wider range of light can be absorbed by a 

variety of chromophores, making IPL less selective than 

lasers. As such, cutoff filters are often used to narrow the 

spectrum of emitted wavelengths and render the device 

more specific.

Treatment of vascular lesions
Vascular lesions are frequently treated with lasers and IPL 

due to the systems’ ability to specifically target intravascular 

oxyhemoglobin. This endogenous chromophore has three 

primary absorption peaks within the visible light spec-

trum: 418, 542, and 577 nm. Oxyhemoglobin absorbs the 

laser light, which is subsequently converted to heat and 

transferred to the vessel wall causing coagulation and ves-

sel closure. Treatment with vascular-specific lasers causes 

inhomogeneous heating within dermal blood vessels due to 

their varying sizes, but results in effective and efficient treat-

ment of small- and large-diameter blood vessels.4 Historically,  

multiple laser systems were shown to be effective in the 

treatment of vascular lesions, but several fell out of favor 

due to high rates of adverse effects. The most commonly 

used vascular lasers in current clinical practice are the 

potassium titanyl phosphate (KTP, 532 nm), pulsed dye laser 

(PDL, 585–595 nm), alexandrite (755 nm), diode (800–810, 

940 nm), and neodymium-doped yttrium aluminum garnet 

(Nd:YAG, 532 and 1,064 nm). In addition, IPL with appropri-

ate filters can be used to treat certain vascular lesions.5

The KTP laser is effective in the treatment of numer-

ous superficial vascular lesions, particularly facial telangi-

ectasias.6,7 Treatments are well tolerated and adverse 

effects include erythema, edema, and crusting. One of the 

advantages of the KTP laser is that postoperative purpura  

and erythema are minimized. Its shorter wavelength results 

in decreased tissue penetration and limited absorption by 

hemoglobin in deeper vessels. Given that there is consider-

able absorption of 532 nm energy by melanin, caution must 

be exercised when treating patients with darker skin.

The PDL is a highly effective laser for the treatment 

of a wide range of vascular lesions and is considered the 

workhorse vascular laser in many practices due to its 

favorable clinical efficacy and low risk profile. The PDL 

has successfully been used to treat port-wine stains,8–17 

facial telangiectasias,18–20 hemangiomas,21–25 pyogenic 

granulomas,26 Kaposi’s sarcoma,27 and poikiloderma of 

Civatte.28 In addition, PDL is highly effective in the treat-

ment of hypertrophic and keloid scars,29–31 striae distensae,32,33 

verrucae,34,35 angiofibromas,36 lymphangiomas, and many 

other dermatologic conditions.37–49 Fluences ranging 

5–10 J/cm2 using 3–10 mm spot sizes with a minimal to no 

pulse overlap reduces unwanted thermal injury. Adverse 

effects include postoperative purpura, transient dyspigmenta-

tion, and rarely vesiculation, crusting, and scarring. Newer 

PDLs with longer wavelengths and extended pulse durations 

have enabled deeper tissue penetration and improved clinical 

outcomes (Figure 1A and B).

IPL has also been used to effectively treat a variety of 

vascular lesions, including facial telangiectasias, capillary 

malformations, poikiloderma of Civatte, venous malforma-

tions, and infantile hemangiomas.5,50–52 Its noncoherent light 

emits wavelengths ranging from 420 to 1,400 nm. Filters are 

used to limit the wavelengths emitted by the device in order to 

improve dermal penetration and minimize absorption of energy 

by other chromophores. IPL energy is delivered as a series of 

single, double, or triple pulse sequences with pulse durations 

of 2–25 milliseconds and interpulse delays of 10–500 milli-

seconds. Longer pulse durations are used to more effectively 

heat deeper vessels, thereby reducing the risk of purpura and 

hyperpigmentation.

Prominent leg veins are a common cosmetic concern 

and can be challenging to treat. Sclerotherapy is highly 
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effective for leg veins and is considered the gold standard 

treatment; however, it can be associated with significant 

adverse effects such as ulceration, allergic reactions, and 

telangiectatic matting.53,54 The KTP and PDL lasers as well 

as IPL have shown efficacy in the treatment of small vessels 

measuring ,1 mm.55–57 The treatment of larger and/or deeper 

vessels requires longer wavelengths and pulse durations. 

The LP alexandrite (755 nm), diode (800 nm), and Nd:YAG 

(1,064 nm) lasers have each been successful in eradicating 

small- to medium-sized veins.57–59

Treatment of hypertrophic scars, 
keloids, and striae
Hypertrophic scars and keloids are abnormal wound 

responses to cutaneous injury and are marked by excessive 

collagen formation. They are difficult to treat and have high 

recurrence rates following conventional treatments such 

as surgical excision, dermabrasion, radiation, and intral-

esional therapy.60–62 Many studies have been published in 

which scars treated with PDL resulted in improvement in 

erythema, texture, pliability, and pain, with minimal side 

effects.29–31,63 Significant clinical improvement of hyper-

trophic scars is often observed after one or two PDL 

treatments, with greatest responses observed with the use 

of lower energy densities64 (Figure 2A and B). Adjunctive 

therapies to PDL such as intralesional corticosteroids or 

5-fluorouracil are most useful for resistant keloids and/or 

actively proliferating hypertrophic scars.65,66 Adverse effects 

after PDL treatment are mild and include purpura that typi-

cally dissipates in several days and temporary dyspigmenta-

tion that resolves spontaneously over time. More recently, 

ablative fractional lasers have been shown to improve 

hypertrophic scars and are often combined with topical 

delivery of corticosteroids for improved efficacy.67,68

Striae distensae are common atrophic lesions that are often 

associated with obesity, pregnancy, puberty, and exogenous 

steroid use. They initially present as slightly erythematous 

to pink atrophic bands, termed striae rubra. They gradu-

ally become hypopigmented and fibrotic and are referred to 

as striae alba. Striae have been treated successfully with 

low-fluence PDL, with stria rubra showing greater clinical 

response to treatment than mature striae alba.32,63 Fractional 

ablative and nonablative lasers have also been shown to 

improve the pigmentation and texture of striae distensae.69,70

Treatment of pigmented lesions
Cutaneous pigmented lesions are frequent targets of laser 

and IPL treatment. QS lasers are highly effective in light-

ening or eliminating benign epidermal and dermal pig-

mented lesions such as solar lentigines, ephelides, café au 

lait macules, seborrheic keratoses, melanocytic nevi, blue 

nevi, nevi of Ota/Ito, infraorbital hyperpigmentation, drug-

induced hyperpigmentation, Becker’s nevi, and nevi spilus. 

These same lasers have also been used to treat amateur, 

professional, and traumatic tattoos. The red and infrared 

wavelengths of the QS lasers target melanin within melano-

somes (as is the case with pigmented lesions) and various 

carbon-based material or organometallic dyes (as is the case 

with tattoos), with limited injury to adjacent normal tissue.71  

A variety of different lasers (including CW and quasi-CW 

systems) have been used to treat pigmented lesions in 

the past; however, they are not currently in wide use due 

to significant risk of scarring and dyspigmentation.72–74 

The short pulsed QS and picosecond systems commonly 

used to treat pigmented lesions and tattoos today include 

A

B

Figure 1 Facial erythema and prominent telangiectasias in a patient with rosacea 
before (A) and after two 595 nm pulsed dye laser (PDL) treatments (B).
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Nd:YAG (532 and 1,064 nm), ruby (694 nm), and alexan-

drite (755 nm) lasers.

The QS ruby was the first system developed to treat 

pigmented lesions and tattoos and was widely and success-

fully used;75–82 however, its 694 nm wavelength required 

caution in patients with darker skin tones due to its energy 

being so strongly absorbed by melanin with a greater risk of 

hypopigmentation.83,84 The subsequent development of QS 

alexandrite and Nd:YAG lasers were also shown to effec-

tively treat pigmented lesions and tattoos with the advantage 

that their longer wavelengths could safely treat darker skin 

and penetrate into the deeper dermis.85–100 Most recently, 

Q-switched lasers that generate picosecond domain pulses 

have been commercially introduced with an even greater 

ability to target and destroy cutaneous pigment and ink101 

(Figure 3A and B).

Effective tattoo removal necessitates the use of an 

appropriate wavelength that is preferentially absorbed by 

the specific ink color within the tattoo.102 Black pigment 

absorbs wavelengths from red through the infrared spectrum 

A

B

Figure 2 Hypertrophic and erythematous surgical scar before (A) and after two 
pulsed dye laser (PDL) treatments (B).
Note: Reprinted from Facial Plast Surg Clin North Am, 2011;19(3), Sobanko JF, Alster 
TS, Laser treatment for improvement and minimization of facial scars, 527–542,61 
Copyright © 2011, with permission from Elsevier.

A

B

Figure 3 Professional tattoo before (A) and after third picosecond Nd:YAG laser 
treatment (B).
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and can thus be treated with QS ruby, QS alexandrite, or QS 

Nd:YAG lasers. The QS ruby or alexandrite lasers can safely 

target blue and green inks since these pigments absorb in the 

600–800 nm range, whereas only the 532 nm QS Nd:YAG 

laser can clear red, orange, and yellow inks. Cosmetic tattoo 

inks that are typically tan, white, or rust colored are difficult 

to treat because they frequently contain iron oxide and tita-

nium dioxide compounds that undergo a chemical reaction 

upon laser irradiation to a black and insoluble form (ferric 

oxide to ferrous oxide).103 Professional tattoos are more 

difficult and require additional sessions to eliminate than  

amateur tattoos, given the dense dermal concentration of ink 

in the former. Adverse effects of laser tattoo removal include 

transient pigmentary alteration (hypo- and hyperpigmenta-

tion), systemic allergic or localized granulomatous tissue 

reactions, ignition of explosive particles in traumatic tattoos, 

and atrophic scars.104,105

IPL devices have also been used to treat benign pig-

mented lesions including ephelides and solar lentigines, with 

significant lesional improvement observed after a series of 

monthly treatments.106–108 They are relatively ineffective in 

the treatment of tattoos because of their inability to deliver 

short pulses that can target and pulverize ink particles.

Hair removal
Safe and long-lasting hair reduction in cosmetically unde-

sirable locations can be achieved with a variety of lasers 

and IPL devices. These systems emit red and infrared 

light with wavelengths ranging 600–1,200 nm, which are 

capable of targeting melanin in the hair shaft, follicular 

epithelium, and hair matrix.109–111 Since melanin is also 

normally present in the epidermis, it presents as another 

competing source for laser energy absorption and can lead 

to undesirable epidermal damage. Concomitant epidermal 

cooling sources help to minimize unwanted thermal injury 

(particularly in patients with darker skin) during treatment. 

While pulse durations of 10–100 milliseconds are typically 

used (in keeping with the thermal relaxation time of most 

hair follicles), the biological target in laser hair removal is 

the follicular stem cell, which is located in the bulge region 

or dermal papilla of the hair follicle. Since these stem cells 

do not always contain significant amounts of melanin and 

may not be directly adjacent to the targeted pigmented 

structures, longer pulse durations than those outlined are 

often necessary for heat diffusion from the follicular shaft to 

the desired end-target.112 Permanent hair reduction without 

significant adverse effects has been achieved despite the use 

of prolonged pulse durations.113

LP ruby (694 nm), alexandrite (755 nm), diode 

(800 nm), and Nd:YAG (1,064 nm) lasers as well as IPL 

(590–1,200 nm) have been shown, through numerous pub-

lished studies, to achieve long-lasting hair reduction with a 

low incidence of adverse effects.110,114–128 The optimal laser 

or IPL selection is determined by the patient’s skin type. 

The LP ruby laser is best used in pale-skinned patients with 

Fitzpatrick skin phototypes I–III,114 whereas the LP alex-

andrite and diode lasers can be safely used in individuals 

with slightly darker skin (Fitzpatrick skin phototypes I–IV). 

The LP Nd:YAG laser system is considered the safest 

option for darker skinned patients due to the decreased 

risk of epidermal injury by its longer wavelength.129 Using 

specific cutoff filters, the IPL system can also be used for 

hair reduction in patients with paler skin. While significant 

hair reduction can be seen after one treatment, multiple 

treatment sessions at monthly time intervals improves the 

clinical outcome.125,126 Adverse effects after laser or IPL 

treatments include blistering, crusting, dyspigmentation, 

and rarely scarring. It is important to select the appropriate 

laser system with correct treatment parameters and caution 

should be exercised in patients with tans or intrinsically 

dark skin.

Ablative laser resurfacing
Laser skin resurfacing has evolved significantly over the past 

2 decades. It was first popularized in the mid-1990s follow-

ing the introduction of the pulsed carbon dioxide (CO
2
) laser 

system for the treatment of facial rhytides and atrophic acne 

scars.130 The 10,600 nm wavelength emitted by a CO
2
 laser is 

absorbed by intracellular water, resulting in tissue heating and 

vaporization. The pulsed CO
2
 laser produces discrete areas 

of tissue vaporization while minimizing thermal injury to 

surrounding tissue that can be associated with scarring and 

hypopigmentation. Subsequent to the development of the 

pulsed and scanned CO
2
 laser systems, the erbium-doped 

yttrium aluminum garnet (Er:YAG) laser was introduced. Its 

2,940 nm wavelength also resulted in controlled skin ablation 

with minimal thermal injury. Because the Er:YAG system 

creates little thermal reaction in the skin, tissue tightening is 

not as dramatic as that seen after CO
2
 laser treatment. On the 

other hand, the minimal thermal injury created by Er:YAG 

laser irradiation leads to quicker postoperative healing and 

fewer side effects.

While numerous cosmetic applications of pulsed and 

scanned CO
2
 and Er:YAG ablative lasers have been reported, 

they have been most frequently used for facial rejuvenation of 

photodamaged skin, including rhytides and dyschromia.131–138 
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Atrophic acne and traumatic scars also can be effectively 

treated with ablative lasers.139,140 Impressive skin tightening 

has been demonstrated with CO
2
 laser skin resurfacing due 

to the thermal effect on dermal collagen.141,142 Ablative lasers 

have been successfully used to treat verrucae vulgaris, sebor-

rheic keratosis, syringoma, xanthelasma, onychodystrophy, 

actinic keratosis, and Zoon’s balanitis among other derma-

tologic conditions.143–145

While extremely effective, prolonged side effects and 

complications associated with ablative laser resurfacing 

were reported.146–150 Frequently encountered posttreatment 

reactions include intense erythema and edema, which can 

persist for several weeks to months.148 Milia and acne can 

be experienced, particularly in individuals with a previ-

ous history of acne and in treatment of scars.147 Infections 

are relatively uncommon, but patients with a history of 

herpes labialis should receive prophylactic oral antiviral 

therapy to reduce the incidence of latent herpes reactiva-

tion.151,152 Postinflammatory hyperpigmentation occurs not 

infrequently, particularly in patients with darker skin tones 

or after aggressive laser treatment.153 Delayed hypopig-

mentation is far less common – typically observed several 

months (.6 months) after treatment147 and develops more 

frequently with CO
2
 laser ablation than with Er:YAG. 

Hypertrophic scarring is another infrequent complication 

that can result from aggressive laser technique, infection, 

and poor wound management. Rarely seen is ectropion 

formation, which can occur when lax periocular skin is 

vaporized in patients with a previous history of lower 

blepharoplasty.

Nonablative laser resurfacing
Nonablative laser systems were developed primarily to 

reduce the risk of adverse effects and the extensive post-

operative recovery period associated with ablative laser 

resurfacing. There are several nonablative laser and IPL 

devices, most of which emit infrared light. They include the 

Nd:YAG (1,064 and 1,320 nm), diode (980 and 1,450 nm), 

erbium: glass (Er:glass, 1,540 nm), and IPL (500–1,200 nm) 

systems. Similar to ablative lasers, they primarily target 

dermal water, which causes collagen heating and dermal 

remodeling. Unlike their ablative counterparts; however, 

epidermal injury and tissue vaporization does not occur 

due to the concomitant application of epidermal cooling. 

Clinical applications of nonablative lasers include facial and 

nonfacial rhytides and scars.154–157 Treatments are typically 

performed in a series of three or more monthly sessions to 

achieve optimal clinical results.154–157 Because the epidermis 

is spared from damage, nonablative lasers can be safely 

used on nonfacial skin and are associated with speedier 

recovery and lower incidence of postoperative side effects 

compared with ablative lasers. Posttreatment erythema and 

edema resolve within 24–48 hours, which is typical, but  

other significant side effects are rare. Blister formation is 

an uncommon complication stemming from insufficient 

epidermal cooling.

Fractional laser skin resurfacing
Fractional photothermolysis was introduced in 2004,158 

thereby revolutionizing laser skin resurfacing. Fractional 

laser systems target tissue water and produce microscopic 

treatment zones of controlled width, depth, and densities 

in the skin. These three-dimensional thermal damage zones 

are referred to as “microscopic thermal zones” (MTZs) and 

are the fundamental units of fractional photothermolysis. 

In contrast to full-field resurfacing, only a fraction of the 

skin is removed. The energy in the fractionated columns 

of the laser induces thermal damage without affecting 

neighboring tissue. Adjacent unaffected tissue serves as a 

source for healing and rapid epidermal repair via migration. 

The targeted damage with MTZ stimulates neocollagenosis 

and collagen remodeling.159,160 As a result, fractionated 

photothermolysis minimizes the risk of complications 

and reduces recovery times seen with the aforemen-

tioned resurfacing lasers. Fractional technology has been 

applied to both ablative and nonablative laser systems. 

Ablative fractional lasers produce MTZ of epidermal and 

dermal tissue vaporization, whereas nonablative fractional 

lasers induce epidermal and dermal coagulation without 

tissue vaporization.

Several nonablative fractional lasers are commercially 

available, including Nd:YAG (1,440 nm), diode (1,440 nm), 

erbium (1,410, 1,540, and 1,550 nm), and thulium (1,927 nm) 

laser systems. These lasers are frequently used for the 

treatment of facial and nonfacial rhytides, dyschromia, 

and scars. Although facial skin treatments result in supe-

rior clinical outcomes, nonfacial skin treatments are also 

impressive. Clinical studies have demonstrated significant 

improvement of facial rhytides, atrophic acne scars, hyper-

trophic scars, and enlarged pores when treated with various 

nonablative fractional lasers161–168 (Figure 4A and B). The 

successful treatment of melasma with nonablative lasers has 

been less consistent.169,170

The ablative CO
2
 and Er:YAG fractionated lasers are 

both highly effective in the treatment of photoaged skin 

and yield similar clinical efficacy and rapid recovery.171–173 
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A

B

Figure 5 Severe atrophic acne scars on the back of a young man before (A) and 
6 months after one ablative fractionated carbon dioxide (CO2) laser treatment (B).

A

B

Figure 4 Periocular rhytides before (A) and after three nonablative fractionated 
erbium (1,550 nm) laser treatments (B).

Ablative fractionated lasers have also been used to 

successfully treat acne scars, including severe scars on a vari-

ety of anatomic locations174,175 (Figure 5A and B). Treatments 

are typically performed as a single procedure due to their 

robust clinical results compared with nonablative fractional 

lasers.

Although fractionated ablative and nonablative lasers 

have a superior safety profile compared with their nonfrac-

tionated counterparts, side effects and complications can still 

occur. Patients often encounter posttreatment erythema and 

edema following nonablative fractional resurfacing that typi-

cally resolve within 3 days.176 Erythema that extends beyond 

4 days is considered prolonged and is reported in 1% of 

patients. In contrast, erythema that lasts beyond 1 month 

following ablative fractional laser treatment is considered 

prolonged and is seen in ∼12.5% of patients.177 A 590 nm 

light-emitting diode system has been shown to reduce post-

fractional laser erythema.178 Herpes simplex virus infection 

is the most common infectious complication following frac-

tionated laser treatment, affecting up to 2% of patients.177 It 

is generally recommended to treat patients prophylactically 

if they have a history of facial herpes simplex virus or if 

perioral laser treatment is performed. Bacterial infection is 

comparatively low with an incidence of 0.1%.177 Antibacterial 

prophylaxis can be useful prior to ablative fractionated laser 

resurfacing. In addition, transient acneiform eruptions can 
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develop following fractionated laser resurfacing in up to 

10% of patients, especially those with a history of acne.177 

Moderate-to-severe acne flares can be treated with a short 

course of tetracycline-based antibiotics. Milia also develop in 

approximately 20% of treated patients and can be minimized 

by avoiding occlusive emollients.177 Postinflammatory hyper-

pigmentation is another possible complication, although less 

frequently encountered when compared with nonfractional 

lasers. The incidence can be .12% in patients with darker 

phototypes (III–VI).179 Delayed-onset hypopigmentation, 

hypertrophic scarring, and the development of vertical and 

horizontal bands are extremely rare complications of ablative 

fractional resurfacing.180–182

Laser phototherapy
The effective treatment of a variety of dermatologic dis-

eases with ultraviolet (UV) phototherapy has long been 

established. Psoriasis has been treated with broadband and 

narrowband UVB light as well as psoralen with UVA for 

decades with significant clinical response. The xenon chlo-

ride excimer laser (308 nm) has been used to treat psoriasis 

as well, demonstrating clearing of psoriatic plaques with 

fewer treatments than narrow-band UVB treatment.183–186 

One of the significant advantages of the excimer laser is 

that it targets only affected areas of skin, thereby prevent-

ing unnecessary exposure of normal tissue to UV radiation. 

Numerous studies have shown the clinical efficacy of the 

excimer laser for the treatment of various forms of pso-

riasis, including a multicenter study which demonstrated 

that 84% of patients reached 75% improvement or better 

after 10 or fewer treatments.184 Treatments are often well 

tolerated, but adverse effects include blistering, erythema, 

and hyperpigmentation. Although clinically effective, treat-

ment limitations include relative expense of therapy, time 

constraints when faced with large surface areas of psoriasis, 

and unknown risk of carcinogenesis.

The excimer laser has also been found to be as effective 

as narrow-band UVB in the treatment of vitiligo, with studies 

demonstrating greater than 75% repigmentation in patches 

of vitiligo after treatment.187 These significant response rates 

are achieved in a relatively short treatment time period com-

pared with traditional phototherapy.188 Other conditions that 

have shown clinical response to the excimer laser include 

atopic dermatitis, alopecia areata, allergic rhinitis, folliculi-

tis, granuloma annulare, lichen planus, mycosis fungoides, 

palmoplantar pustulosis, pityriasis alba, CD30+ lymphopro-

liferative disorder, leukoderma, prurigo nodularis, localized 

scleroderma, and genital lichen sclerosus.189

Conclusion
Laser and IPL systems have diverse clinical applications 

throughout the field of dermatology and are constantly 

evolving. These technologies have facilitated the treatment 

of benign vascular and pigmented lesions, unwanted hair, 

tattoos, hypertrophic scars, keloids, rhytides, as well as 

dermatologic diseases such as psoriasis and vitiligo. Laser 

resurfacing, including ablative and nonablative fractional 

treatments have yielded excellent cosmetic results with 

improved safety profiles and recovery. Refinement of exist-

ing devices and the development of novel technologies will 

continue to expand the role of lasers and IPL in the future 

and enable practitioners to deliver the most cutting-edge 

and sophisticated treatments for a wider range of cutaneous 

conditions.
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